If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+20x-51=0
a = 4.9; b = 20; c = -51;
Δ = b2-4ac
Δ = 202-4·4.9·(-51)
Δ = 1399.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-\sqrt{1399.6}}{2*4.9}=\frac{-20-\sqrt{1399.6}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+\sqrt{1399.6}}{2*4.9}=\frac{-20+\sqrt{1399.6}}{9.8} $
| (5x^2-4x=6)-(2x^2=2x-6) | | x/2+2=17 | | 10n-32=9n | | 3x+7/2=4 | | 2.5m=2m+100 | | -z+2z^2-5=0 | | 4+2m+3=28 | | 3x+6=9x-12, | | 4.9x^2-20x-51=0 | | 6(2c+6)=-48 | | -6b-67=6b+5 | | 2+100=2.5x | | 5m^2+17m-40=0 | | -2x+46=2x+14 | | 6x+3x-24=2x+5x+40 | | 5x+2x+20=3x+2x+62 | | x^2-300x+33=0 | | 5x+2x+20=3x+2x62 | | 8y-2-3y+1=0 | | ?x12-43=85-246 | | 13/x=5 | | 3r+4r^2-8=0 | | 2(y-1)+2=2y | | 7x-1+10x-13=180 | | X+11+5x-9+2x+10=180 | | -1/4(x-8)=2-7x | | X+11+5x-9+2x+11=180 | | 24+6w=15+5w | | 22x+26x+132=180 | | 7.6x-6.1=31.9 | | 8x-9+15x=12x | | -n-33=10n |